Math 221: LINEAR ALGEBRA

Chapter 4. Vector Geometry
 §4-4. Linear Operators on \mathbb{R}^{3}

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $03 / 01 / 2021$)

Rotations

Reflections

Multiple Actions

Summary

NOTE: Much of this chapter is what you would learn in Multivariable Calculus.
You might find it interesting/useful to read.
But I will only cover the material important to this course.

Rotations

Reflections

Multiple Actions

Summary

Rotations

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. The transformation $\mathrm{T}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{m}}$ defined by

$$
T(\vec{x})=A \vec{x} \text { for each } \vec{x} \in \mathbb{R}^{n}
$$

is called the matrix transformation induced by A .

Definition (Rotations in \mathbb{R}^{2})
The transformation

$$
\mathrm{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

denotes counterclockwise rotation about the origin through an angle of θ.

Rotation through an angle of θ preserves scalar multiplication.

Rotation through an angle of θ preserves vector addition.
R_{θ} is a linear transformation
Since R_{θ} preserves addition and scalar multiplication, R_{θ} is a linear transformation, and hence a matrix transformation.

The matrix that induces R_{θ} can be found by computing $\mathrm{R}_{\theta}\left(\mathrm{E}_{1}\right)$ and $\mathrm{R}_{\theta}\left(\mathrm{E}_{2}\right)$, where

$$
\begin{aligned}
& \mathrm{E}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathrm{E}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \\
& \mathrm{R}_{\theta}\left(\mathrm{E}_{1}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right],
\end{aligned}
$$

and

$$
\mathrm{R}_{\theta}\left(\mathrm{E}_{2}\right)=\mathrm{R}_{\theta}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

The Matrix for R_{θ}
The rotation $\mathrm{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and is induced by the matrix

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

We denote by

$$
\mathrm{R}_{\pi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of π.

We see that $\mathrm{R}_{\pi}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{a} \\ -\mathrm{b}\end{array}\right]=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so R_{π} is a matrix transformation.

Problem

The transformation $\mathrm{R}_{\frac{\pi}{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denotes a counterclockwise rotation about the origin through an angle of $\frac{\pi}{2}$ radians. Find the matrix of $\mathrm{R}_{\frac{\pi}{2}}$.

Solution
First,

$$
\mathrm{R}_{\frac{\pi}{2}}\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{r}
-\mathrm{b} \\
\mathrm{a}
\end{array}\right]
$$

Furthermore $\mathrm{R}_{\frac{\pi}{2}}$ is a matrix transformation, and the matrix it is induced by is

$$
\left[\begin{array}{c}
-\mathrm{b} \\
\mathrm{a}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right] .
$$

We denote by

$$
\mathrm{R}_{\pi / 2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

counterclockwise rotation about the origin through an angle of $\pi / 2$.

We see that $\mathrm{R}_{\pi / 2}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}-\mathrm{b} \\ \mathrm{a}\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$, so $\mathrm{R}_{\pi / 2}$ is a matrix transformation.

Rotations

Reflections

Multiple Actions

Summary

Reflections

Example

In \mathbb{R}^{2}, reflection in the x -axis, which transforms $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{r}\mathrm{a} \\ -\mathrm{b}\end{array}\right]$, is a matrix transformation because

$$
\left[\begin{array}{r}
\mathrm{a} \\
-\mathrm{b}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right] .
$$

Example

In \mathbb{R}^{2}, reflection in the y-axis transforms $\left[\begin{array}{l}\text { a } \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{r}-\mathrm{a} \\ \mathrm{b}\end{array}\right]$. This is a matrix transformation because

$$
\left[\begin{array}{r}
-\mathrm{a} \\
\mathrm{~b}
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right] .
$$

Reflection in the line $\mathrm{y}=\mathrm{x}$ transforms $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]$ to $\left[\begin{array}{l}\mathrm{b} \\ \mathrm{a}\end{array}\right]$.

This is a matrix transformation because

$$
\left[\begin{array}{c}
\mathrm{b} \\
\mathrm{a}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b}
\end{array}\right]
$$

Let $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection in the line $\mathrm{y}=\mathrm{mx}$, and let $\overrightarrow{\mathrm{u}} \in \mathbb{R}^{2}$.

The figure indicates that $\mathrm{Q}_{\mathrm{m}}(2 \overrightarrow{\mathrm{u}})=2 \mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}})$. In general, for any scalar k , $\mathrm{Q}_{\mathrm{m}}(\mathrm{k} \overrightarrow{\mathrm{x}})=\mathrm{kQ}_{\mathrm{m}}(\overrightarrow{\mathrm{x}})$,
i.e., Q_{m} preserves scalar multiplication.

Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}} \in \mathbb{R}^{2}$.

The figure indicates that

$$
\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}})+\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{v}})=\mathrm{Q}_{\mathrm{m}}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}),
$$

i.e., Q_{m} preserves vector addition.
Q_{m} is a linear transformation
Since Q_{m} preserves addition and scalar multiplication, Q_{m} is a linear transformation, and hence a matrix transformation.

The matrix that induces Q_{m} can be found by computing $\mathrm{Q}_{\mathrm{m}}\left(\mathrm{E}_{1}\right)$ and $\mathrm{Q}_{\mathrm{m}}\left(\mathrm{E}_{2}\right)$, where

$$
\mathrm{E}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathrm{E}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

$$
\begin{aligned}
& \cos \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \quad \operatorname{and} \quad \sin \theta=\frac{m}{\sqrt{1+\mathrm{m}^{2}}} \\
& \mathrm{Q}_{\mathrm{m}}\left(\mathrm{E}_{1}\right)=\left[\begin{array}{c}
\cos (2 \theta) \\
\sin (2 \theta)
\end{array}\right]=\left[\begin{array}{c}
\cos ^{2} \theta-\sin 2 \theta \\
2 \sin \theta \cos \theta
\end{array}\right]=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{c}
1-\mathrm{m}^{2} \\
2 \mathrm{~m}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\cos \theta=\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}} \text { and } \sin \theta=\frac{1}{\sqrt{1+\mathrm{m}^{2}}} \\
\mathrm{Q}_{\mathrm{m}}\left(\mathrm{E}_{2}\right)=\left[\begin{array}{c}
\cos \left(\frac{\pi}{2}-2 \theta\right) \\
\sin \left(\frac{\pi}{2}-2 \theta\right)
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\pi}{2} \cos (2 \theta)+\sin \frac{\pi}{2} \sin (2 \theta) \\
\sin \frac{\pi}{2} \cos (2 \theta)-\cos \frac{\pi}{2} \sin (2 \theta)
\end{array}\right] \\
=\left[\begin{array}{c}
\sin (2 \theta) \\
\cos (2 \theta)
\end{array}\right]=\left[\begin{array}{c}
2 \sin \theta \cos \theta \\
\cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right]=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{c}
2 \mathrm{~m} \\
\mathrm{~m}^{2}-1
\end{array}\right]
\end{gathered}
$$

The Matrix for Reflection in $\mathrm{y}=\mathrm{mx}$
The transformation $\mathrm{Q}_{\mathrm{m}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, reflection in the line $\mathrm{y}=\mathrm{mx}$, is a linear transformation and is induced by the matrix

$$
\frac{1}{1+m^{2}}\left[\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right]
$$

Rotations

Reflections

Multiple Actions

Summary

Multiple Actions

Problem

Find the rotation or reflection that equals reflection in the x -axis followed by rotation through an angle of $\frac{\pi}{2}$.

Solution
Let Q_{0} denote the reflection in the x-axis, and $R_{\frac{\pi}{2}}$ denote the rotation through an angle of $\frac{\pi}{2}$. We want to find the matrix for the transformation $\mathrm{R}_{\frac{\pi}{2}} \circ \mathrm{Q}_{0}$.
Q_{0} is induced by $\mathrm{A}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$, and $\mathrm{R}_{\frac{\pi}{2}}$ is induced by

$$
\mathrm{B}=\left[\begin{array}{rr}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Solution
Hence $\mathrm{R}_{\frac{\pi}{2}} \circ \mathrm{Q}_{0}$ is induced by

$$
\mathrm{BA}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Notice that $\mathrm{BA}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a reflection matrix.
How do we know this?

Solution (continued)
Compare BA to

$$
Q_{\mathrm{m}}=\frac{1}{1+\mathrm{m}^{2}}\left[\begin{array}{cc}
1-\mathrm{m}^{2} & 2 \mathrm{~m} \\
2 \mathrm{~m} & \mathrm{~m}^{2}-1
\end{array}\right]
$$

Now, since $1-\mathrm{m}^{2}=0$, we know that $\mathrm{m}=1$ or $\mathrm{m}=-1$. But $\frac{2 \mathrm{~m}}{1+\mathrm{m}^{2}}=1>0$, so $m>0$, implying $m=1$.

Therefore,

$$
\mathrm{R}_{\frac{\pi}{2}} \circ \mathrm{Q}_{0}=\mathrm{Q}_{1}
$$

reflection in the line $\mathrm{y}=\mathrm{x}$.

Problem (Relection followed by reflection)

Find the rotation or reflection that equals reflection in the line $y=-x$ followed by reflection in the y-axis.

Solution
We must find the matrix for the transformation $\mathrm{Q}_{\mathrm{Y}} \circ \mathrm{Q}_{-1}$.
Q_{-1} is induced by

$$
A=\frac{1}{2}\left[\begin{array}{rr}
0 & -2 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right],
$$

and Q_{Y} is induced by

$$
\mathrm{B}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Therefore, $\mathrm{QY}_{\mathrm{Y}} \circ \mathrm{Q}_{-1}$ is induced by BA.

Solution (continued)

$$
\mathrm{BA}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

What transformation does BA induce?

Rotation through an angle θ such that

$$
\cos \theta=0 \quad \text { and } \quad \sin \theta=-1 .
$$

Therefore, $\mathrm{Q}_{\mathrm{Y}} \circ \mathrm{Q}_{-1}=\mathrm{R}_{-\frac{\pi}{2}}=\mathrm{R}_{\frac{3 \pi}{2}}$.

Rotations

Reflections

Multiple Actions

Summary

Summary

In general,

- The composite of two rotations is a rotation

$$
\mathrm{R}_{\theta} \circ \mathrm{R}_{\eta}=\mathrm{R}_{\theta+\eta}
$$

- The composite of two reflections is a rotation.

$$
\mathrm{Q}_{\mathrm{m}} \circ \mathrm{Q}_{\mathrm{n}}=\mathrm{R}_{\theta}
$$

where θ is $2 \times$ the angle between lines $\mathrm{y}=\mathrm{mx}$ and $\mathrm{y}=\mathrm{nx}$.

- The composite of a reflection and a rotation is a reflection.

$$
R_{\theta} \circ Q_{\mathrm{n}}=\mathrm{Q}_{\mathrm{m}} \circ \mathrm{Q}_{\mathrm{n}} \circ \mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{m}}
$$

